

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	SunVOSC-0.1

Contents

	Overview
	Installation

	Documentation

	Development

	Installation

	Usage

	Reference
	sunvosc

	SunVOSC and SunVox DLL internals
	Slots

	Internal pattern

	Playback patterns

	Project patterns

	Timing

	OSC Namespace
	/slotN/...

	Messages sent to SunVOSC from peers

	Messages sent by SunVOSC to peers

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	0.1.1 (under development)

	0.1.0 (2016-11-09)

	SunVOSC license

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Matthew Scott.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SunVOSC-0.1

Overview

	docs
	[image: Documentation Status] [https://readthedocs.org/projects/sunvosc]

	tests
	
[image: Travis-CI Build Status] [https://travis-ci.org/metrasynth/SunVOSC] [image: Requirements Status] [https://requires.io/github/metrasynth/sunvosc/requirements/?branch=master]

	package
	[image: PyPI Package latest release] [https://pypi.python.org/pypi/sunvosc] [image: PyPI Package monthly downloads] [https://pypi.python.org/pypi/sunvosc] [image: PyPI Wheel] [https://pypi.python.org/pypi/sunvosc]

Bidirectional OSC bridge for SunVox DLL

	Free software: MIT license

Installation

pip install sunvosc

Documentation

https://sunvosc.readthedocs.io/

Development

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

	Windows
	set PYTEST_ADDOPTS=--cov-append
tox

	Other
	PYTEST_ADDOPTS=--cov-append tox

 Copyright 2016, Matthew Scott.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SunVOSC-0.1

Installation

At the command line:

pip install sunvosc

 Copyright 2016, Matthew Scott.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SunVOSC-0.1

Usage

To use SunVOSC in a project:

import sunvosc

 Copyright 2016, Matthew Scott.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SunVOSC-0.1

Reference

	sunvosc

 Copyright 2016, Matthew Scott.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SunVOSC-0.1

 	Reference

sunvosc

 Copyright 2016, Matthew Scott.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SunVOSC-0.1

SunVOSC and SunVox DLL internals

In order to successfully work with SunVox DLL via OSC,
it is important to be aware of some of the internals involved
that affect the characteristics of performance.

Slots

	In each instance of SunVox DLL, there are 4 playback slots.

	All slots share the same audio output.

	Each slot has independent state for everything else,
including modules, patterns, tempo, and playback state.

Internal pattern

	SunVox DLL maintains a single internal pattern that is used for
playback of notes using the sv_send_event API call.

	It contains 16 tracks.

	Notes are played immediately upon sending an event,
rather than when the next row is scheduled to play.

	You cannot send multiple events to the internal pattern
that rely on another track. For example, this means if you send a note to
track 0, then send an effect to track 1 using the “previous track”
note command, no effect will actually occur.

	SunVOSC exposes the internal pattern for purposes of playing notes
as early as possible, such as in the case of immediate performance of notes
generated by a MIDI device.

Playback patterns

	SunVOSC maintains one or more playback patterns in slot(s) used to play
events queued via OSC.

	Each has 16 tracks (or the maximum supported by the current version
of SunVox).

	Each have the same number of rows, and are played in a continuous loop.

	Each is positioned at (0, 0) on the timeline.

	Actual rows are used to implement virtual rows by way of clearing
and reusing rows that were already played.

	Peer initializes SunVOSC by sending a message to initialize a playback slot,
specifying number of patterns and number of actual rows per pattern.

	The following sequence is repeated during playback:
	Peer sends message(s) to fill virtual row(s) with events.

	SunVOSC receives the event(s), and stores or drops each event according
to these rules:
	SunVOSC stores an event into the appropriate playback pattern
if its virtual row is greater than the current playback row,
and less than the current playback row plus the number of actual
rows.

	SunVOSC silently drops an event if its virtual row is less than
or equal to the current playback row, or greater than the
current playback row plus the number of actual rows.

	Upon detecting that an actual row is being played by SunVox DLL,
SunVOSC will do the following:
	Send a message to peer with the following fields:
	virtual row number that was just played

	maximum virtual row now available for queueing future events

	Initialize the prior actual row with zeros, to prevent playback
of past events.

	Peer is responsible for sending future events in time for them to be
stored and not dropped.

	Peer is responsible for avoiding sending events that are too far in the
future and thus would be dropped.

Project patterns

	If a project is loaded into a SunVOSC slot and it contains patterns
that are fully or partially in the positive timeline space,
they will be relocated internally to be entirely in the negative
timeline space.

	For projects that already have tracks in the negative space,
tracks in positive space will be relocated: the end of all
relocated tracks will occur before the beginning of the existing
negative tracks.

	SunVOSC maintains a relocation map, so that any request to play some or
all of a row of the original timeline space can be mapped to the relocated
space.

	SunVOSC calculates the maximum number of overlapping patterns
in the project, and maintains that number of extra playback patterns
dedicated to playing back rows from existing patterns.

	When a request to play some or all of a row of the original timeline space
is received, SunVOSC will copy the tracks from each pattern in that row
to playback pattern(s) at the row that immediatey succeeds that which is
currently playing.

Timing

Tempo and ticks

	Upon slot initialization, SunVOSC will set tempo to 125 and
ticks-per-line to 1.

This provide the highest resolution of note scheduling that
directly aligns with a standard MIDI beat clock of 24 ticks
per quarter note.

	Peer may set tempo and ticks-per-line at any time by queueing standard
SunVox effects.

	Peer is responsible for maintaining its own knowledge of timing for
the purposes of synchronizing with other systems, e.g. generating MIDI
clock events.

LFOs

	SunVox LFOs do not automatically reset during transport commands
such as start/stop.

	Peer is responsible for resetting LFO as needed via the “Set Phase”
controller if LFO phase must be deterministic.

 Copyright 2016, Matthew Scott.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SunVOSC-0.1

OSC Namespace

All arguments are required unless marked as optional.

/slotN/...

Address patterns pertaining to a specific slot witin the SunVox DLL
playback engine.

N must be in the range 0..3.

Messages sent to SunVOSC from peers

/slotN/inform/start,si

Add an endpoint to send informational OSC messages to.

	host(s)

	The hostname or IP address to inform.

	port(i)

	The port to inform.

/slotN/inform/stop,si

Remove an endpoint so it no longer receives informational OSC messages.

	host(s)

	The string-formatted hostname or IP address to stop informing.

	port(i)

	The port to stop informing.

/slotN/init,ii[b|s]

Stops slot playback, initializes with an empty or specified project,
resets playback state, resets virtual row counter to -1, and
resets master volume to either 80 for an empty project or the master
volume set by the project being loaded.

	patterns(i)

	Number of playback patterns to create. Must be at least 1 if initializing
an empty project, or at least the maximum number of overlapping patterns
in the timeline of the loaded project.

	pattern_length(i)

	Length of playback pattern(s). Must be within the range 4..4096.

The third argument may be one of these options:

	project_data(b) (optional)

	Content of existing SunVox project to initialize with.

	project_filename(s) (optional)

	Filename of existing SunVox project to initialize with.
Must be UTF-8 encoded.

/slotN/start

Starts playback.

/slotN/stop

Stops playback. Does not reset module state.

/slotN/volume,i

Sets master volume of slot.

	volume(i)

	The volume to set.

/slotN/queue,iii(i|F)(i|F)(i|s|F)(i|F)(i|F)(i|F)

Queues a command for playback.

	row(i)

	The virtual row to queue into. Must be greater than the row currently
being played.

	pattern(i)

	The pattern to queue into. Must be within the range 0..x where x
must be less than the number of playback patterns the slot was
initialized with.

	track(i)

	The track to queue into. Must be within the range 0..15.

	note_cmd(i|F)

	The note or note command to queue, or False if not applicable.

	velocity(i|F)

	The velocity of the note. Must be within the range 0..128,
or False if not applicable.

	module(i|s|F)

	The module to trigger. False if not triggering a module.
If an actual module number, must be within the range 1..255.
May be a module tag instead, if actual module number is not known.

	controller(i|F)

	The controller to set a value for. Must be within the range 1..32,
or False if not adjusting a controller.

	effect(i|F)

	The note effect to apply. Must be a valid SunVox effect number,
or False if not applying an effect. Must not be 0x30, which
stops playback; instead use the /slotN/stop command to do so.

	parameter(i|F)

	The 32-bit “XXYY” encoded parameter for controller or effect,
or False if not setting a parameter. Effects that require
separate “XX” and “YY” parameters must be encoded to “XXYY” form
by the sender.

/slotN/play,i(i|F)(i|F)(i|s|F)(i|F)(i|F)(i|F)

Plays a note immediately using the SunVox DLL internal pattern.

	track(i)

	The track to send the note to. Must be within the range 0..15.

	note_cmd(i|F)

	The note or note command to queue, or False if not applicable.
Must not be an “FX to previous track” command.

	velocity(i|F)

	The velocity of the note. Must be within the range 0..128,
or False if not applicable.

	module(i|s|F)

	The module to trigger. False if not triggering a module.
If an actual module number, must be within the range 1..255.
May be a module tag instead, if actual module number is not known.

	controller(i|F)

	The controller to set a value for. Must be within the range 1..32,
or False if not adjusting a controller.

	effect(i|F)

	The note effect to apply. Must be a valid SunVox effect number,
or False if not applying an effect. Must not be 0x30, which
stops playback; instead use the /slotN/stop command to do so.

	parameter(i|F)

	The 32-bit “XXYY” encoded parameter for controller or effect,
or False if not setting a parameter. Effects that require
separate “XX” and “YY” parameters must be encoded to “XXYY” form
by the sender.

/slotN/new_module,ss[iii]

	tag(s)

	A UUID representing the module that will be loaded.
SunVOSC will use this tag when sending a message containing
the actual module number.

	module_type

	The type of the module, exactly as it appears in SunVox.
(e.g. Generator)

	name (default: same as module_type)

	The name of the new module.

	x (default: 512)

	X position of the module.

	y (default: 512)

	Y position of the module.

	z (default: 0)

	Z position (layer) of the module.

/slotN/load_module,s(b|s)[iii]

	tag(s)

	A UUID representing the module that will be loaded.
SunVOSC will use this tag when sending a message containing
the actual module number.

The second argument must be one of the following:

	synth_data(b)

	Content of existing SunVox project to initialize with.

	synth_filename(s)

	Filename of existing SunVox project to initialize with.
Must be UTF-8 encoded.

Optional to specify module position:

	x (default: 512)

	X position of the module.

	y (default: 512)

	Y position of the module.

	z (default: 0)

	Z position (layer) of the module.

/slotN/connect,(i|s)(i|s)

	module_from(i|s)

	Tag or module number of connection’s source.

	module_to(i|s)

	Tag or module number of of connection’s destination.

/slotN/disconnect,(i|s)(i|s)

	module_from(i|s)

	Tag or module number of connection’s source.

	module_to(i|s)

	Tag or module number of of connection’s destination.

Messages sent by SunVOSC to peers

These messages are broadcast to all listeners registered to be informed.

/slotN/ready

(No arguments.)

Sent to indicate that the slot has been initialized.

/slotN/module_created,s(i|F)

	tag(s)

	The tag sent when loading or creating a module.

	number(i|F)

	The module number of the module that was loaded or created;
or False if the module couldn’t be loaded or created.

/slotN/modules_connected,ii

	module_from(i)

	Tag or module number of connection’s source.

	module_to(i)

	Tag or module number of of connection’s destination.

/slotN/modules_disconnected,ii

	module_from(i)

	Tag or module number of connection’s source.

	module_to(i)

	Tag or module number of of connection’s destination.

/slotN/started

(No arguments.)

/slotN/stopped

(No arguments.)

/slotN/played,(i|F)(i|F)

	row(i|F)

	The virtual row that began playback;
``False``if playback hasn’t started.

	frame(i|F)

	The audio frame number where the row began, relative to the beginning of
slot playback; ``False``if playback hasn’t started.

This is sent once to each listener registered using /slotN/inform/start,si
immediately after SunVOSC detects that a new row is being played by
SunVox DLL.

This is also sent to a new listener immediately after it’s registered
to be informed.

 Copyright 2016, Matthew Scott.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SunVOSC-0.1

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/metrasynth/sunvosc/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

SunVOSC could always use more documentation, whether as part of the
official SunVOSC docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/metrasynth/sunvosc/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up sunvosc for local development:

	Fork sunvosc [https://github.com/metrasynth/sunvosc]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:your_name_here/sunvosc.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, run all the checks, doc builder and spell checker with tox [http://tox.readthedocs.org/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) [1].

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	[1]	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/metrasynth/sunvosc/pull_requests] for each change you add in the pull request.

It will be slower though ...

Tips

To run a subset of tests:

tox -e envname -- py.test -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

 Copyright 2016, Matthew Scott.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SunVOSC-0.1

Authors

	Matthew Scott [https://github.com/gldnspud]

 Copyright 2016, Matthew Scott.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SunVOSC-0.1

Changelog

0.1.1 (under development)

	...

0.1.0 (2016-11-09)

	Initial release.

 Copyright 2016, Matthew Scott.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	SunVOSC-0.1

SunVOSC license

MIT License

Copyright (c) 2016 Matthew Scott and contributors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Copyright 2016, Matthew Scott.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	SunVOSC-0.1

 Python Module Index

 s

 			

 		
 s	

 	
 	
 sunvosc	

 Copyright 2016, Matthew Scott.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	SunVOSC-0.1

Index

 S

S

 	

 	sunvosc (module)

 Copyright 2016, Matthew Scott.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		SunVOSC-0.1 »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Matthew Scott.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

